Publications

Topics:
  1. A. A. Rosenberg, N. Yehishalom, A. Marx, A. M. Bronstein, An amino-domino model described by a cross-peptide-bond Ramachandran plot defines amino acid pairs as local structural units, Proc. US National Academy of Sciences (PNAS), 2023 details

    An amino-domino model described by a cross-peptide-bond Ramachandran plot defines amino acid pairs as local structural units

    A. A. Rosenberg, N. Yehishalom, A. Marx, A. M. Bronstein
    Proc. US National Academy of Sciences (PNAS), 2023

    Protein structure, both at the global and local level, dictates function. Proteins fold from chains of amino acids, forming secondary structures, α-helices and β-strands, that, at least for globular proteins, subsequently fold into a three-dimensional structure. Here, we show that a Ramachandran-type plot focusing on the two dihedral angles separated by the peptide bond, and entirely contained within an amino acid pair, defines a local structural unit. We further demonstrate the usefulness of this cross-peptide-bond Ramachandran plot by showing that it captures β-turn conformations in coil regions, that traditional Ramachandran plot outliers fall into occupied regions of our plot, and that thermophilic proteins prefer specific amino acid pair conformations. Further, we demonstrate experimentally that the effect of a point mutation on backbone conformation and protein stability depends on the amino acid pair context, i.e., the identity of the adjacent amino acid, in a manner predictable by our method.

    T. Weiss, L. Cosmo, E. Mayo Yanes, S. Chakraborty, A. M. Bronstein, R. Gershoni-Poranne, Guided diffusion for inverse molecular design, Nature Computational Science 3(10), 873–882, 2023 details

    Guided diffusion for inverse molecular design

    T. Weiss, L. Cosmo, E. Mayo Yanes, S. Chakraborty, A. M. Bronstein, R. Gershoni-Poranne
    Nature Computational Science 3(10), 873–882, 2023

    The holy grail of materials science is de novo molecular design — i.e., the ability to engineer molecules with desired characteristics. Recently, this goal has become increasingly achievable thanks to developments such as equivariant graph neural networks that can better predict molecular properties, and to the improved performance of generation tasks, in particular of conditional generation, in text-to-image generators and large language models. Herein, we introduce GaUDI, a guided diffusion model for inverse molecular design, which combines these advances and can generate novel molecules with desired properties. GaUDI decouples the generator and the property-predicting models and can be guided using both point-wise targets and open-ended targets (e.g., minimum/maximum). We demonstrate GaUDI’s effectiveness using single- and multiple-objective tasks applied to newly-generated data sets of polycyclic aromatic systems, achieving nearly 100% validity of generated molecules. Further, for some tasks, GaUDI discovers better molecules than those present in our data set of 475k molecules.

    E. Schwartz, A. M. Bronstein, R. Giryes, ISP distillation, IEEE Open Journal of Signal Processing 4, 12-20, 2023 details

    ISP distillation

    E. Schwartz, A. M. Bronstein, R. Giryes
    IEEE Open Journal of Signal Processing 4, 12-20, 2023

    Nowadays, many of the images captured are ‘observed’ by machines only and not by humans, e.g., in autonomous systems. High-level machine vision models, such as object recognition or semantic segmentation, assume images are transformed into some canonical image space by the camera Image Signal Processor (ISP). However, the camera ISP is optimized for producing visually pleasing images for human observers and not for machines. Therefore, one may spare the ISP compute time and apply vision models directly to RAW images. Yet, it has been shown that training such models directly on RAW images results in a performance drop. To mitigate this drop, we use a RAW and RGB image pairs dataset, which can be easily acquired with no human labeling. We then train a model that is applied directly to the RAW data by using knowledge distillation such that the model predictions for RAW images will be aligned with the predictions of an off-the-shelf pre-trained model for processed RGB images. Our experiments show that our performance on RAW images for object classification and semantic segmentation is significantly better than models trained on labeled RAW images. It also reasonably matches the predictions of a pre-trained model on processed RGB images, while saving the ISP compute overhead.

    T. Blau, R. Ganz, C. Baskin, M. Elad, A. M. Bronstein, Classifier robustness enhancement via test-time transformation, arXiv preprint arXiv:2303.15409 2023 details

    Classifier robustness enhancement via test-time transformation

    T. Blau, R. Ganz, C. Baskin, M. Elad, A. M. Bronstein
    arXiv preprint arXiv:2303.15409 2023

    It has been recently discovered that adversarially trained classifiers exhibit an intriguing property, referred to as perceptually aligned gradients (PAG). PAG implies that the gradients of such classifiers possess a meaningful structure, aligned with human perception. Adversarial training is currently the best-known way to achieve classification robustness under adversarial attacks. The PAG property, however, has yet to be leveraged for further improving classifier robustness. In this work, we introduce Classifier Robustness Enhancement Via Test-Time Transformation (TETRA) — a novel defense method that utilizes PAG, enhancing the performance of trained robust classifiers. Our method operates in two phases. First, it modifies the input image via a designated targeted adversarial attack into each of the dataset’s classes. Then, it classifies the input image based on the distance to each of the modified instances, with the assumption that the shortest distance relates to the true class. We show that the proposed method achieves state-of-the-art results and validate our claim through extensive experiments on a variety of defense methods, classifier architectures, and datasets. We also empirically demonstrate that TETRA can boost the accuracy of any differentiable adversarial training classifier across a variety of attacks, including ones unseen at training. Specifically, applying TETRA leads to substantial improvement of up to +23%, +20%, and +26% on CIFAR10, CIFAR100, and ImageNet, respectively.

    E. Rozenberg, A. Karnieli, O. Yesharim, J. Foley-Comer, S. Trajtenberg-Mills, S. Mishra, S. Prabhakar, R. P. Singh, D. Freedman, A. M. Bronstein, A. Arie, Designing nonlinear photonic crystals for high-dimensional quantum state engineering, ICLR Workshop on Machine Learning for Materials, 2023 details

    Designing nonlinear photonic crystals for high-dimensional quantum state engineering

    E. Rozenberg, A. Karnieli, O. Yesharim, J. Foley-Comer, S. Trajtenberg-Mills, S. Mishra, S. Prabhakar, R. P. Singh, D. Freedman, A. M. Bronstein, A. Arie
    ICLR Workshop on Machine Learning for Materials, 2023

    We propose a novel, physically-constrained and differentiable approach for the generation of D-dimensional qudit states via spontaneous parametric downconversion (SPDC) in quantum optics. We circumvent any limitations imposed by the inherently stochastic nature of the physical process and incorporate a set of stochastic dynamical equations governing its evolution under the SPDC Hamiltonian. We demonstrate the effectiveness of our model through the design of
    structured nonlinear photonic crystals (NLPCs) and shaped pump beams; and show, theoretically and experimentally, how to generate maximally entangled states in the spatial degree of freedom. The learning of NLPC structures offers a promising new avenue for shaping and controlling arbitrary quantum states and enables all-optical coherent control of the generated states. We believe that this approach can readily be extended from bulky crystals to thin Metasurfaces and potentially applied to other quantum systems sharing a similar Hamiltonian structures, such as superfluids and superconductors.

    E. Rozenberg, A. Karnieli, O. Yesharim, J. Foley-Comer, S. Trajtenberg-Mills, S. Mishra, S. Prabhakar, R. P. Singh, D. Freedman, A. M. Bronstein, A. Arie, A machine learning approach to generate quantum light, ICLR Workshop on Physics for Machine Learning, 2023 details

    A machine learning approach to generate quantum light

    E. Rozenberg, A. Karnieli, O. Yesharim, J. Foley-Comer, S. Trajtenberg-Mills, S. Mishra, S. Prabhakar, R. P. Singh, D. Freedman, A. M. Bronstein, A. Arie
    ICLR Workshop on Physics for Machine Learning, 2023

    Spontaneous parametric down-conversion (SPDC) is a key technique in quantum optics used to generate entangled photon pairs. However, generating a desirable D-dimensional qudit state in the SPDC process remains a challenge. In this paper, we introduce a physically-constrained and differentiable model to overcome this challenge, and demonstrate its effectiveness through the design of shaped pump beams and structured nonlinear photonic crystals. We avoid any restrictions induced by the stochastic nature of our physical process and integrate a set of stochastic dynamical equations governing its evolution under the SPDC Hamiltonian. Our model is capable of learning the relevant interaction parameters and designing nonlinear quantum optical systems that achieve desired quantum states. We show, theoretically and experimentally, how to generate maximally entangled states in the spatial degree of freedom. Additionally, we demonstrate all-optical coherent control of the generated state by reshaping the pump beam. Our work has potential applications in high-dimensional quantum key distribution and quantum information processing.

    H. Ye, S. Vedula, Y. Chen, Y. Yang, A. M. Bronstein, R. Dreslinski, T. Mudge, N. Talati, GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference, Proc. ACM Int'l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2023 details

    GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference

    H. Ye, S. Vedula, Y. Chen, Y. Yang, A. M. Bronstein, R. Dreslinski, T. Mudge, N. Talati
    Proc. ACM Int'l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2023

    The high memory bandwidth demand of sparse embedding layers continues to be a critical challenge in scaling the performance of recommendation models. While prior works have exploited heterogeneous memory system designs and partial embedding sum memoization techniques, they offer limited benefits. This is because prior designs either target a very small subset of embeddings to simplify their analysis or incur a high processing cost to account for all embeddings, which does not scale with the large sizes of modern embedding tables. This paper proposes GRACE—a lightweight and scalable graph-based algorithm-system co-design framework to significantly improve the embedding layer performance of recommendation models. GRACE proposes a novel Item Co-occurrence Graph (ICG) that scalably records item co-occurrences. GRACE then presents a new system-aware ICG clustering algorithm to find frequently accessed item combinations of arbitrary lengths to compute and memoize their partial sums. High-frequency partial sums are stored in a software-managed cache space to reduce memory traffic and improve the throughput of computing sparse features. We further present a cache data layout and low-cost address computation logic to efficiently lookup item embeddings and their partial sums. Our evaluation shows that GRACE significantly outperforms the state-of-the-art techniques SPACE and MERCI by 1.5× and 1.4×, respectively.

    S. Vedula, I. Tallini, A. A. Rosenberg, M. Pegoraro, E. Rodolà, Y. Romano, A. M. Bronstein, Continuous vector quantile regression, Proc. ICML Workshop Frontiers4LCD, 2023 details

    Continuous vector quantile regression

    S. Vedula, I. Tallini, A. A. Rosenberg, M. Pegoraro, E. Rodolà, Y. Romano, A. M. Bronstein
    Proc. ICML Workshop Frontiers4LCD, 2023

    Vector quantile regression (VQR) estimates the conditional vector quantile function (CVQF), a fundamental quantity which fully represents the conditional distribution of Y|X. VQR is formulated as an optimal transport (OT) problem between a uniform U~μ and the target (X,Y)~ν, the solution of which is a unique transport map, co-monotonic with U. Recently NL-VQR has been proposed to estimate support non-linear CVQFs, together with fast solvers which enabled the use of this tool in practical applications. Despite its utility, the scalability and estimation quality of NL-VQR is limited due to a discretization of the OT problem onto a grid of quantile levels. We propose a novel continuous formulation and parametrization of VQR using partial input-convex neural networks (PICNNs). Our approach allows for accurate, scalable, differentiable and invertible estimation of non-linear CVQFs. We further demonstrate, theoretically and experimentally, how continuous CVQFs can be used for general statistical inference tasks: estimation of likelihoods, CDFs, confidence sets, coverage, sampling, and more. This work is an important step towards unlocking the full potential of VQR.

    M. Pegoraro, S. Vedula, A. A. Rosenberg, I. Tallini, E. Rodolà, A. M. Bronstein, Vector quantile regression on manifolds, ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems, 2023 details

    Vector quantile regression on manifolds

    M. Pegoraro, S. Vedula, A. A. Rosenberg, I. Tallini, E. Rodolà, A. M. Bronstein
    ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems, 2023

    Quantile regression (QR) is a statistical tool for distribution-free
    estimation of conditional quantiles of a target variable given explanatory
    features. QR is limited by the assumption that the target distribution is
    univariate and defined on an Euclidean domain. Although the notion of quantiles
    was recently extended to multi-variate distributions, QR for multi-variate
    distributions on manifolds remains underexplored, even though many important
    applications inherently involve data distributed on, e.g., spheres (climate
    measurements), tori (dihedral angles in proteins), or Lie groups (attitude in
    navigation). By leveraging optimal transport theory and the notion of
    c-concave functions, we meaningfully define conditional vector quantile
    functions of high-dimensional variables on manifolds (M-CVQFs). Our approach
    allows for quantile estimation, regression, and computation of conditional
    confidence sets. We demonstrate the approach’s efficacy and provide insights
    regarding the meaning of non-Euclidean quantiles through preliminary synthetic
    data experiments.

    T. Weiss, A. Wahab, A. M. Bronstein, R. Gershoni-Poranne, Interpretable deep learning unveils structure-property relationships in polybenzenoid hydrocarbons, Journal of Organic Chemistry, 2023 details

    Interpretable deep learning unveils structure-property relationships in polybenzenoid hydrocarbons

    T. Weiss, A. Wahab, A. M. Bronstein, R. Gershoni-Poranne
    Journal of Organic Chemistry, 2023

    In this work, interpretable deep learning was used to identify structure-property relationships governing the HOMO-LUMO gap and relative stability of polybenzenoid hydrocarbons (PBHs). To this end, a ring-based graph representation was used. In addition to affording reduced training times and excellent predictive ability, this representation could be combined with a subunit-based perception of PBHs, allowing chemical insights to be presented in terms of intuitive and simple structural motifs. The resulting insights agree with conventional organic chemistry knowledge and electronic structure-based analyses, and also reveal new behaviors and identify influential structural motifs. In particular, we evaluated and compared the effects of linear, angular, and branching motifs on these two molecular properties, as well as explored the role of dispersion in mitigating torsional strain inherent in non-planar PBHs. Hence, the observed regularities and the proposed analysis contribute to a deeper understanding of the behavior of PBHs and form the foundation for design strategies for new functional PBHs.

    A. A. Rosenberg, S. Vedula, Y. Romano, A. M. Bronstein, Fast nonlinear vector quantile regression, Proc. ICML, 2023 details

    Fast nonlinear vector quantile regression

    A. A. Rosenberg, S. Vedula, Y. Romano, A. M. Bronstein
    Proc. ICML, 2023

    Quantile regression (QR) is a powerful tool for estimating one or more conditional quantiles of a target variable Y given explanatory features X. A limitation of QR is that it is only defined for scalar target variables, due to the formulation of its objective function, and since the notion of quantiles has no standard definition for multivariate distributions. Recently, vector quantile regression (VQR) was proposed as an extension of QR for high-dimensional target variables, thanks to a meaningful generalization of the notion of quantiles to multivariate distributions. Despite its elegance, VQR is arguably not applicable in practice due to several limitations: (i) it assumes a linear model for the quantiles of the target Y given the features X; (ii) its exact formulation is intractable even for modestly-sized problems in terms of target dimensions, the number of regressed quantile levels, or the number of features, and its relaxed dual formulation may violate the monotonicity of the estimated quantiles; (iii) no fast or scalable solvers for VQR currently exist. In this work we fully address these limitations, namely: (i) We extend VQR to the non-linear case, showing substantial improvement over linear VQR; (ii) We propose vector monotone rearrangement, a method which ensures the estimates obtained by VQR relaxations are monotone functions; (iii) We provide fast, GPU-accelerated solvers for linear and nonlinear VQR which maintain a fixed memory footprint with the number of samples and quantile levels, and demonstrate that they scale to millions of samples and thousands of quantile levels; (iv) We release an optimized python package of our solvers as to widespread the use of VQR in real-world applications.

    D. Zadok, O. Salzman, A. Wolf, A. M. Bronstein, Towards predicting fine finger motions from ultrasound images via kinematic representation, Proc. ICRA, 2023 details

    Towards predicting fine finger motions from ultrasound images via kinematic representation

    D. Zadok, O. Salzman, A. Wolf, A. M. Bronstein
    Proc. ICRA, 2023

    A central challenge in building robotic prostheses is the creation of a sensor-based system able to read physiological signals from the lower limb and instruct a robotic hand to perform various tasks. Existing systems typically perform discrete gestures such as pointing or grasping, by employing electromyography (EMG) or ultrasound (US) technologies to analyze the state of the muscles. In this work, we study the inference problem of identifying the activation of specific fingers from a sequence of US images when performing dexterous tasks such as keyboard typing or playing the piano. While estimating finger gestures has been done in the past by detecting prominent gestures, we are interested in classification done in the context of fine motions that evolve over time. We consider this task as an important step towards higher adoption rates of robotic prostheses among arm amputees, as it has the potential to dramatically increase functionality in performing daily tasks. Our key observation, motivating this work, is that modeling the hand as a robotic manipulator allows to encode an intermediate representation wherein US images are mapped to said configurations. Given a sequence of such learned configurations, coupled with a neural-network architecture that exploits temporal coherence, we are able to infer fine finger motions. We evaluated our method by collecting data from a group of subjects and demonstrating how our framework can be used to replay music played or text typed. To the best of our knowledge, this is the first study demonstrating these downstream tasks within an end-to-end system.

    A. M. Bronstein, A. Marx, Water stabilizes an alternate turn conformation in horse heart myoglobin, Nature Scientific Reports, 2023 details

    Water stabilizes an alternate turn conformation in horse heart myoglobin

    A. M. Bronstein, A. Marx
    Nature Scientific Reports, 2023

    Comparison of myoglobin structures reveals that protein isolated from horse heart consistently adopts an alternate turn conformation in comparison to its homologues. Analysis of hundreds of high-resolution structures discounts crystallization conditions or the surrounding amino acid protein environment as explaining this difference, that is also not captured by the AlphaFold prediction. Rather, a water molecule is identified as stabilizing the conformation in the horse heart structure, which immediately reverts to the whale conformation in molecular dynamics simulations excluding that structural water.

    B. Gahtan, R. Cohen, A. M. Bronstein, G. Kedar, Using deep reinforcement learning for mmWave real-time scheduling, Proc. Int'l Conf. Network of the Future (NoF), 2023 details

    Using deep reinforcement learning for mmWave real-time scheduling

    B. Gahtan, R. Cohen, A. M. Bronstein, G. Kedar
    Proc. Int'l Conf. Network of the Future (NoF), 2023

    We study the problem of real-time scheduling in a multi-hop millimeter-wave (mmWave) mesh. We develop a model-free deep reinforcement learning algorithm called Adaptive Activator RL (AARL), which determines the subset of mmWave links that should be activated during each time slot and the power level for each link. The most important property of AARL is its ability to make scheduling decisions within the strict time slot constraints of typical 5G mmWave networks. AARL can handle a variety of network topologies, network loads, and interference models, it can also adapt to different workloads. We demonstrate the operation of AARL on several topologies: a small topology with 10 links, a moderately-sized mesh with 48 links, and a large topology with 96 links. We show that for each topology, we compare the throughput obtained by AARL to that of a benchmark algorithm called RPMA (Residual Profit Maximizer Algorithm). The most important advantage of AARL compared to RPMA is that it is much faster and can make the necessary scheduling decisions very rapidly during every time slot, while RPMA cannot. In addition, the quality of the scheduling decisions made by AARL outperforms those made by RPMA.

    T. Shor, T. Weiss, D. Noti, A. M. Bronstein, Multi PILOT: Feasible learned multiple acquisition trajectories for dynamic MRI, Proc. Medical Imaging with Deep Learning (MIDL), 2023 details

    Multi PILOT: Feasible learned multiple acquisition trajectories for dynamic MRI

    T. Shor, T. Weiss, D. Noti, A. M. Bronstein
    Proc. Medical Imaging with Deep Learning (MIDL), 2023

    Dynamic Magnetic Resonance Imaging (MRI) is known to be a powerful and reliable technique for the dynamic imaging of internal organs and tissues, making it a leading diagnostic tool. A major difficulty in using MRI in this setting is the relatively long acquisition time (and, hence, increased cost) required for imaging in high spatio-temporal resolution,
    leading to the appearance of related motion artifacts and decrease in resolution. Compressed Sensing (CS) techniques have become a common tool to reduce MRI acquisition time by subsampling images in the k-space according to some acquisition trajectory. Several studies have particularly focused on applying deep learning techniques to learn these acquisition trajectories in order to attain better image reconstruction, rather than using some predefined set of trajectories. To the best of our knowledge, learning acquisition trajectories has been only explored in the context of static MRI. In this study, we consider acquisition trajectory learning in the dynamic imaging setting. We design an end-to-end pipeline for the joint optimization of multiple per-frame acquisition trajectories along with a reconstruction neural network, and demonstrate improved image reconstruction quality in shorter acquisition times.

    A. B. Bainson, J. Hermanns, P. Petsinis, N. Aavad, C. Dam Larsen, T. Swayne, A. Boyarski, D. Mottin, A. M. Bronstein, P. Karras, Spectral subgraph localization, Proc. Learning on Graphs Conference, 2023 details

    Spectral subgraph localization

    A. B. Bainson, J. Hermanns, P. Petsinis, N. Aavad, C. Dam Larsen, T. Swayne, A. Boyarski, D. Mottin, A. M. Bronstein, P. Karras
    Proc. Learning on Graphs Conference, 2023

    Several graph analysis problems are based on some variant of subgraph isomorphism: Given two graphs, G and Q, does G contain a subgraph isomorphic to Q? As this problem is NP-complete, past work usually avoids addressing it explicitly. In this paper, we propose a method that localizes, i.e., finds the best-match position of, Q in G, by aligning their Laplacian spectra and enhance its stability via bagging strategies; we relegate the finding of an exact node correspondence from Q to G to a subsequent and separate graph alignment task. We demonstrate that our localization strategy outperforms a baseline based on the state-of-the-art method for graph alignment in terms of accuracy on real graphs and scales to hundreds of nodes as no other method does.