Publications

Topics:
  1. C. Baskin, E. Schwartz, E. Zheltonozhskii, N. Liss, R. Giryes, A. M. Bronstein, A. Mendelson, UNIQ: Uniform noise injection for non-uniform quantization of neural networks, ACM Transactions on Computer Systems (TOCS), 2020 details

    UNIQ: Uniform noise injection for non-uniform quantization of neural networks

    C. Baskin, E. Schwartz, E. Zheltonozhskii, N. Liss, R. Giryes, A. M. Bronstein, A. Mendelson
    ACM Transactions on Computer Systems (TOCS), 2020

    We present a novel method for training a neural network amenable to inference in low-precision arithmetic with quantized weights and activations. The training is performed in full precision with random noise injection emulating quantization noise. In order to circumvent the need to simulate realistic quantization noise distributions, the weight distributions are uniformized by a non-linear transfor- mation, and uniform noise is injected. This procedure emulates a non-uniform k-quantile quantizer at inference time, which adapts to the specific distribution of the quantized parameters. As a by-product of injecting noise to weights, we find that activations can also be quantized to as low as 8-bit with only a minor accuracy degradation. The method achieves state-of-the-art results for training low-precision networks on ImageNet. In particular, we observe no degradation in accuracy for MobileNet and ResNet-18/34/50 on ImageNet with as low as 4-bit quantization of weights. Our solution achieves the state-of-the-art results in accuracy, in the low computational budget regime, compared to similar models.

    J. Alush-Aben, L. Ackerman-Schraier, T. Weiss, S. Vedula, O. Senouf, A. M. Bronstein, 3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI, Proc. Machine Learning for Medical Image Reconstruction, MICCAI 2020 details

    3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI

    J. Alush-Aben, L. Ackerman-Schraier, T. Weiss, S. Vedula, O. Senouf, A. M. Bronstein
    Proc. Machine Learning for Medical Image Reconstruction, MICCAI 2020

    Magnetic Resonance Imaging (MRI) has long been considered to be among the gold standards of today’s diagnostic imaging. The most significant drawback of MRI is long acquisition times, prohibiting its use in standard practice for some applications. Compressed sensing (CS) proposes to subsample the k-space (the Fourier domain dual to the physical space of spatial coordinates) leading to significantly accelerated acquisition. However, the benefit of compressed sensing has not been fully  exploited; most of the sampling densities obtained through CS do not produce a trajectory that obeys the stringent constraints of the MRI machine imposed in practice. Inspired by recent success of deep learning-based approaches for image reconstruction and ideas from computational imaging on learning-based design of imaging systems, we introduce 3D FLAT, a novel protocol for data-driven design of 3D non-Cartesian accelerated trajectories in MRI. Our proposal leverages the entire 3D k-space to simultaneously learn a physically feasible acquisition trajectory with a reconstruction method. Experimental results, performed as a proof-of-concept, suggest that 3D FLAT achieves higher image quality for a given readout time compared to standard trajectories such as radial, stack-of-stars, or 2D learned trajectories (trajectories that evolve only in the 2D plane while fully sampling along the third dimension). Furthermore, we demonstrate evidence supporting the significant benefit of performing MRI acquisitions using non-Cartesian 3D trajectories over 2D non-Cartesian trajectories acquired slice-wise.

    T. Weiss, S. Vedula, O. Senouf, O. Michailovich, A. M. Bronstein, Towards learned optimal q-space sampling in diffusion MRI, Proc. Computational Diffusion MRI, MICCAI 2020 details

    Towards learned optimal q-space sampling in diffusion MRI

    T. Weiss, S. Vedula, O. Senouf, O. Michailovich, A. M. Bronstein
    Proc. Computational Diffusion MRI, MICCAI 2020

    Fiber tractography is an important tool of computational neuroscience that enables reconstructing the spatial connectivity and organization of white matter of the brain. Fiber tractography takes advantage of diffusion Magnetic Resonance Imaging (dMRI) which allows measuring the apparent diffusivity of cerebral water along different spatial directions. Unfortunately, collecting such data comes at the price of reduced spatial resolution and substantially elevated acquisition times, which limits the clinical applicability of dMRI. This problem has been thus far addressed using two principal strategies. Most of the efforts have been extended towards improving the quality of signal estimation for any, yet fixed sampling scheme (defined through the choice of diffusion encoding gradients). On the other hand, optimization over the sampling scheme has also proven to be effective. Inspired by the previous results, the present work consolidates the above strategies into a unified estimation framework, in which the optimization is carried out with respect to both estimation model and sampling design concurrently. The proposed solution offers substantial improvements in the quality of signal estimation as well as the accuracy of ensuing analysis by means of fiber tractography. While proving the optimality of the learned estimation models would probably need more extensive evaluation, we nevertheless claim that the learned sampling schemes can be of immediate use, offering a way to improve the dMRI analysis without the necessity of deploying the neural network used for their estimation. We present a comprehensive comparative analysis based on the Human Connectome Project data.

    E. Zheltonozhskii, C. Baskin, A. M. Bronstein, A. Mendelson, Self-supervised learning for large-scale unsupervised image clustering, NeurIPS 2020 Workshop: Self-Supervised Learning - Theory and Practice, 2020 details

    Self-supervised learning for large-scale unsupervised image clustering

    E. Zheltonozhskii, C. Baskin, A. M. Bronstein, A. Mendelson
    NeurIPS 2020 Workshop: Self-Supervised Learning - Theory and Practice, 2020

    Unsupervised learning has always been appealing to machine learning researchers and practitioners, allowing them to avoid an expensive and complicated process of labeling the data. However, unsupervised learning of complex data is challenging, and even the best approaches show much weaker performance than their supervised counterparts. Self-supervised deep learning has become a strong instrument for representation learning in computer vision. However, those methods have not been evaluated in a fully unsupervised setting.
    In this paper, we propose a simple scheme for unsupervised classification based on self-supervised representations. We evaluate the proposed approach with several recent self-supervised methods showing that it achieves competitive results for ImageNet classification (39% accuracy on ImageNet with 1000 clusters and 46% with overclustering). We suggest adding the unsupervised evaluation to a set of standard benchmarks for self-supervised learning.

     

    G. Mariani, L. Cosmo, A. M. Bronstein, E. Rodolà, Generating adversarial surfaces via band-limited perturbations, Computer Graphics Forum, 2020 details

    Generating adversarial surfaces via band-limited perturbations

    G. Mariani, L. Cosmo, A. M. Bronstein, E. Rodolà
    Computer Graphics Forum, 2020

    Adversarial attacks have demonstrated remarkable efficacy in altering the output of a learning model by applying a minimal perturbation to the input data. While increasing attention has been placed on the image domain, however, the study of adversarial perturbations for geometric data has been notably lagging behind. In this paper, we show that effective adversarial attacks can be concocted for surfaces embedded in 3D, under weak smoothness assumptions on the perceptibility of the attack. We address the case of deformable 3D shapes in particular, and introduce a general model that is not tailored to any specific surface representation, nor does it assume access to a parametric description of the 3D object.In this context, we consider targeted and untargeted variants of the attack, demonstrating compelling results in either case. We further show how discovering adversarial examples, and then using them for adversarial training, leads to an increase in both robustness and accuracy. Our findings are confirmed empirically over multiple datasets spanning different semantic classes and deformations.

    B. Chmiel, C. Baskin, R. Banner, E. Zheltonozshkii, Y. Yermolin, A. Karbachevsky, A. M. Bronstein, A. Mendelson, Feature map transform coding for energy-efficient CNN inference, Proc. Intl. Joint Conf. on Neural Networks (IJCNN), 2020 details

    Feature map transform coding for energy-efficient CNN inference

    B. Chmiel, C. Baskin, R. Banner, E. Zheltonozshkii, Y. Yermolin, A. Karbachevsky, A. M. Bronstein, A. Mendelson
    Proc. Intl. Joint Conf. on Neural Networks (IJCNN), 2020

    Convolutional neural networks (CNNs) achieve state-of-the-art accuracy in a variety of tasks in computer vision and beyond. One of the major obstacles hindering the ubiquitous use of CNNs for inference on low-power edge devices is their relatively high computational complexity and memory bandwidth requirements. The latter often dominates the energy footprint on modern hardware. In this paper, we introduce a lossy transform coding approach, inspired by image and video compression, designed to reduce the memory bandwidth due to the storage of intermediate activation calculation results. Our method exploits the high correlations between feature maps and adjacent pixels and allows to halve the data transfer volumes to the main memory without re-training. We analyze the performance of our approach on a variety of CNN architectures and demonstrated FPGA implementation of ResNet18 with our approach results in a reduction of around 40% in the memory energy footprint compared to quantized network with negligible impact on accuracy. A reference implementation accompanies the paper.

    E. Amrani, R. Ben-Ari, T. Hakim, A. M. Bronstein, Self-Supervised Object Detection and Retrieval Using Unlabeled Videos, CVPR workshop, 2020 details

    Self-Supervised Object Detection and Retrieval Using Unlabeled Videos

    E. Amrani, R. Ben-Ari, T. Hakim, A. M. Bronstein
    CVPR workshop, 2020

    Unlabeled video in the wild presents a valuable, yet so far unharnessed, source of information for learning vision tasks. We present the first attempt of fully self-supervised learning of object detection from subtitled videos without any manual object annotation. To this end, we use the How2 multi-modal collection of instructional videos with English subtitles. We pose the problem as learning with a weakly- and noisily-labeled data, and propose a novel training model that can confront high noise levels, and yet train a classifier to localize the object of interest in the video frames, without any manual labeling involved. We evaluate our approach on a set of 11 manually annotated objects in over 5000 frames and compare it to an existing weakly-supervised approach as baseline. Benchmark data and code will be released upon acceptance of the paper.

    D. H. Silver, M. Feder, Y. Gold-Zamir, A. L. Polsky, S. Rosentraub, E. Shachor, A. Weinberger, P. Mazur, V. D. Zukin, A. M. Bronstein, Data-driven prediction of embryo implantation probability using IVF time-lapse imaging, Proc. MIDL, 2020 details

    Data-driven prediction of embryo implantation probability using IVF time-lapse imaging

    D. H. Silver, M. Feder, Y. Gold-Zamir, A. L. Polsky, S. Rosentraub, E. Shachor, A. Weinberger, P. Mazur, V. D. Zukin, A. M. Bronstein
    Proc. MIDL, 2020

    The process of fertilizing a human egg outside the body in order to help those suffering from infertility to conceive is known as in vitro fertilization (IVF). Despite being the most effective method of assisted reproductive technology (ART), the average success rate of IVF is a mere 20-40%. One step that is critical to the success of the procedure is selecting which embryo to transfer to the patient, a process typically conducted manually and without any universally accepted and standardized criteria. In this paper, we describe a novel data-driven system trained to directly predict embryo implantation probability from embryogenesis time-lapse imaging videos. Using retrospectively collected videos from 272 embryos, we demonstrate that, when compared to an external panel of embryologists, our algorithm results in a 12% increase of positive predictive value and a 29% increase of negative predictive value.

    T. Weiss, S. Vedula, O. Senouf, A. M. Bronstein, O. Michailovich, M. Zibulevsky, Joint learning of Cartesian undersampling and reconstruction for accelerated MRI, Proc. Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2020 details

    Joint learning of Cartesian undersampling and reconstruction for accelerated MRI

    T. Weiss, S. Vedula, O. Senouf, A. M. Bronstein, O. Michailovich, M. Zibulevsky
    Proc. Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2020

    Magnetic Resonance Imaging (MRI) is considered today the golden-standard modality for soft tissues. The long acquisition times, however, make it more prone to motion artifacts as well as contribute to the relatively high costs of this examination. Over the years, multiple studies concentrated on designing reduced measurement schemes and image reconstruction schemes for MRI, however, these problems have been so far addressed separately. On the other hand, recent works in optical computational imaging have demonstrated growing success of the simultaneous learning-based design of the acquisition and reconstruction schemes manifesting significant improvement in the reconstruction quality with a constrained time budget. Inspired by these successes, in this work, we propose to learn accelerated MR acquisition schemes (in the form of Cartesian trajectories) jointly with the image reconstruction operator. To this end, we propose an algorithm for training the combined acquisition-reconstruction pipeline end-to-end in a differentiable way. We demonstrate the significance of using the learned Cartesian trajectories at different speed up rates.

    S. Sommer, A. M. Bronstein, Horizontal flows and manifold stochastics in geometric deep learning, IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), 2020 details

    Horizontal flows and manifold stochastics in geometric deep learning

    S. Sommer, A. M. Bronstein
    IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), 2020

    We introduce two constructions in geometric deep learning for 1) transporting orientation-dependent convolutional filters over a manifold in a continuous way and thereby defining a convolution operator that naturally incorporates the rotational effect of holonomy; and 2) allowing efficient evaluation of manifold convolution layers by sampling manifold valued random variables that center around a weighted Brownian motion maximum likelihood mean. Both methods are inspired by stochastics on manifolds and geometric statistics, and provide examples of how stochastic methods — here horizontal frame bundle flows and non-linear bridge sampling schemes, can be used in geometric deep learning. We outline the theoretical foundation of the two methods, discuss their relation to Euclidean deep networks and existing methodology in geometric deep learning, and establish important properties of the proposed constructions.

    K. Rotker, D. Ben-Bashat, A. M. Bronstein, Over-parameterized models for vector fields, SIAM Journal on Imaging Sciences (SIIMS), 2020 details

    Over-parameterized models for vector fields

    K. Rotker, D. Ben-Bashat, A. M. Bronstein
    SIAM Journal on Imaging Sciences (SIIMS), 2020

    Vector fields arise in a variety of quantity measure and visualization techniques such as fluid flow imaging, motion estimation, deformation measures, and color imaging, leading to a better understanding of physical phenomena. Recent progress in vector field imaging technologies has emphasized the need for efficient noise removal and reconstruction algorithms. A key ingredient in the success of extracting signals from noisy measurements is prior information, which can often be represented as a parameterized model. In this work, we extend the over-parameterization variational framework in order to perform model-based reconstruction of vector fields. The over-parameterization methodology combines local modeling of the data with global model parameter regularization. By considering the vector field as a linear combination of basis vector fields and appropriate scale and rotation coefficients, the denoising problem reduces to a simpler form of coefficient recovery. We introduce two versions of the over-parameterization framework: total variation-based method and sparsity-based method, relying on the co-sparse analysis model. We demonstrate the efficiency of the proposed frameworks for two- and three-dimensional vector fields with linear and quadratic over-parameterization models.

    A. Tsitsulin, M. Munkhoeva, D. Mottin, P. Karras. A. M. Bronstein, I. Oseledets, E. Müller, Intrinsic multi-scale evaluation of generative models, Proc. ICLR, 2020 details

    Intrinsic multi-scale evaluation of generative models

    A. Tsitsulin, M. Munkhoeva, D. Mottin, P. Karras. A. M. Bronstein, I. Oseledets, E. Müller
    Proc. ICLR, 2020

    Generative models are often used to sample high-dimensional data points from a manifold with small intrinsic dimension. Existing techniques for comparing generative models focus on global data properties such as mean and covariance; in that sense, they are extrinsic and uni-scale. We develop the first, to our knowledge, intrinsic and multi-scale method for characterizing and comparing underlying data manifolds, based on comparing all data moments by lower-bounding the spectral notion of the Gromov-Wasserstein distance between manifolds. In a thorough experimental study, we demonstrate that our method effectively evaluates the quality of generative models; further, we showcase its efficacy in discerning the disentanglement process in neural networks.

    A. Karbachevsky, C. Baskin, E. Zheltonozshkii, Y. Yermolin, F. Gabbay, A. M. Bronstein, A. Mendelson, HCM: Hardware-aware complexity metric for neural network architectures, arXiv:2004.08906, 2020 details

    HCM: Hardware-aware complexity metric for neural network architectures

    A. Karbachevsky, C. Baskin, E. Zheltonozshkii, Y. Yermolin, F. Gabbay, A. M. Bronstein, A. Mendelson
    arXiv:2004.08906, 2020

    Convolutional Neural Networks (CNNs) have become common in many fields including computer vision, speech recognition, and natural language processing. Although CNN hardware accelerators are already included as part of many SoC architectures, the task of achieving high accuracy on resource-restricted devices is still considered challenging, mainly due to the vast number of design parameters that need to be balanced to achieve an efficient solution. Quantization techniques, when applied to the network parameters, lead to a reduction of power and area and may also change the ratio between communication and computation. As a result, some algorithmic solutions may suffer from lack of memory bandwidth or computational resources and fail to achieve the expected performance due to hardware constraints. Thus, the system designer and the micro-architect need to understand at early development stages the impact of their high-level decisions (e.g., the architecture of the CNN and the amount of bits used to represent its parameters) on the final product (e.g., the expected power saving, area, and accuracy). Unfortunately, existing tools fall short of supporting such decisions. This paper introduces a hardware-aware complexity metric that aims to assist the system designer of the neural network architectures, through the entire project lifetime (especially at its early stages) by predicting the impact of architectural and micro-architectural decisions on the final product. We demonstrate how the proposed metric can help evaluate different design alternatives of neural network models on resource-restricted devices such as real-time embedded systems, and to avoid making design mistakes at early stages.

    E. Zheltonozhskii, C. Baskin, Y. Nemcovsky, B. Chmiel, A. Mendelson, A. M. Bronstein, Colored noise injection for training adversarially robust neural networks, arXiv:2003.02188, 2020 details

    Colored noise injection for training adversarially robust neural networks

    E. Zheltonozhskii, C. Baskin, Y. Nemcovsky, B. Chmiel, A. Mendelson, A. M. Bronstein
    arXiv:2003.02188, 2020

    Even though deep learning have shown unmatched performance on various tasks, neural networks has been shown to be vulnerable to small adversarial perturbation of the input which lead to significant performance degradation. In this work we extend the idea of adding independent Gaussian noise to weights and activation during adversarial training (PNI) to injection of colored noise for defense against common white-box and black-box attacks. We show that our approach outperforms PNI and various previous approaches in terms of adversarial accuracy on CIFAR-10 dataset. In addition, we provide an extensive ablation study of the proposed method justifying the chosen configurations.

    A. Livne, A. M. Bronstein, R. Kimmel, Z. Aviv, S. Grofit, Do we need depth in state-of-the-art face authentication?, Proc. IEEE Int'l Conf. on 3D Vision (3DV), 2020 details

    Do we need depth in state-of-the-art face authentication?

    A. Livne, A. M. Bronstein, R. Kimmel, Z. Aviv, S. Grofit
    Proc. IEEE Int'l Conf. on 3D Vision (3DV), 2020

    Some face recognition methods are designed to utilize geometric features extracted from depth sensors to handle the challenges of single-image based recognition technologies. However, calculating the geometrical data is an expensive and challenging process. Here, we introduce a novel method that learns distinctive geometric features from stereo camera systems without the need to explicitly compute the facial surface or depth map. The raw face stereo images along with coordinate maps allow a CNN to learn geometric features. This way, we keep the simplicity and cost-efficiency of recognition from a single image, while enjoying the benefits of geometric data without explicitly reconstructing it. We demonstrate that the suggested method outperforms both existing single-image and explicit depth-based methods on large-scale benchmarks. We also provide an ablation study to show that the suggested method uses the coordinate maps to encode more informative features.

    M. Shkolnik, B. Chmiel, R. Banner, G. Shomron, Y. Nahshan, A. M. Bronstein, U. Weiser, Robust Quantization: One Model to Rule Them All, Proc. NeurIPS, 2020 details

    Robust Quantization: One Model to Rule Them All

    M. Shkolnik, B. Chmiel, R. Banner, G. Shomron, Y. Nahshan, A. M. Bronstein, U. Weiser
    Proc. NeurIPS, 2020

    Neural network quantization methods often involve simulating the quantization process during training. This makes the trained model highly dependent on the precise way quantization is performed. Since low-precision accelerators differ in their quantization policies and their supported mix of data-types, a model trained for one accelerator may not be suitable for another. To address this issue, we propose KURE, a method that provides intrinsic robustness to the model against a broad range of quantization implementations. We show that KURE yields a generic model that may be deployed on numerous inference accelerators without a significant loss in accuracy

    Y. Choukroun , A. Shtern, A. M. Bronstein, R. Kimmel, Hamiltonian operator for spectral shape analysis, IEEE Trans. Vis. and Comp. Graphics, vol. 26(2), 2020 details

    Hamiltonian operator for spectral shape analysis

    Y. Choukroun , A. Shtern, A. M. Bronstein, R. Kimmel
    IEEE Trans. Vis. and Comp. Graphics, vol. 26(2), 2020

    Many shape analysis methods treat the geometry of an object as a metric space that can be captured by the Laplace-Beltrami operator. In this paper, we propose to adapt the classical Hamiltonian operator from quantum mechanics to the field of shape analysis. To this end, we study the addition of a potential function to the Laplacian as a generator for dual spaces in which shape processing is performed. We present general optimization approaches for solving variational problems involving the basis defined by the Hamiltonian using perturbation theory for its eigenvectors. The suggested operator is shown to produce better functional spaces to operate with, as demonstrated on different shape analysis tasks.